
doi: 10.3390/en18102544
To enhance the adaptability of grid partitioning under transient scenarios, this paper proposes a two-stage dynamic partitioning strategy based on structure–function coupling. Electrical coupling strength is first characterized using short-circuit impedance and the sensitivity between reactive power and voltage, while transient voltage correlation is incorporated through cosine similarity as edge weights in a graph model. Grid partitioning is then conducted by maximizing modularity through a staged approach that ensures network connectivity and automatically determines partition numbers. Case studies on the modified IEEE 39-bus system demonstrate that compared with transient voltage-based partitioning and conventional complex network methods, the proposed approach improves modularity by 69%, reduces the maximum post-fault voltage deviation by 38.6%, and achieves the highest regional decoupling rate. The result shows strong intra-regional cohesion and weak inter-regional connectivity, verifying the strategy’s effectiveness in enhancing adaptability and decoupling under transient conditions.
node voltage correlation, Technology, T, two-stage partitioning, structure–function coupling, electrical coupling strength, modularity
node voltage correlation, Technology, T, two-stage partitioning, structure–function coupling, electrical coupling strength, modularity
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
