Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Open Journal of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Journal of Vehicular Technology
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scalable Reinforcement Learning Framework for Traffic Signal Control Under Communication Delays

Authors: Aoyu Pang; Maonan Wang; Yirong Chen; Man-On Pun; Michael Lepech;

Scalable Reinforcement Learning Framework for Traffic Signal Control Under Communication Delays

Abstract

Vehicle-to-everything (V2X) technology is pivotal for enhancing road safety, traffic efficiency, and energy conservation through the communication of vehicles with their surrounding entities such as other vehicles, pedestrians, roadside infrastructure, and networks. Among these, traffic signal control (TSC) plays a significant role in roadside infrastructure for V2X. However, most existing works on TSC design assume that real-time traffic flow information is accessible, which does not hold in real-world deployment. This study proposes a two-stage framework to address this issue. In the first stage, a scene prediction module and a scene context encoder are utilized to process historical and current traffic data to generate preliminary traffic signal actions. In the second stage, an action refinement module, informed by human-defined traffic rules and real-time traffic metrics, adjusts the preliminary actions to account for the latency in observations. This modular design allows device deployment with varying computational resources while facilitating system customization, ensuring both adaptability and scalability, particularly in edge-computing environments. Through extensive simulations on the SUMO platform, the proposed framework demonstrates robustness and superior performance in diverse traffic scenarios under varying communication delays. The related code is available at https://github.com/Traffic-Alpha/TSC-DelayLight.

Related Organizations
Keywords

Transportation engineering, reinforcement learning, TA1001-1280, historical-future data fusion, Traffic signal control, scalable framework, Transportation and communications, HE1-9990

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold