Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/sc4140...
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY SA
Data sources: Datacite
Research Collection
Conference object . 2024
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

LLAMP: Assessing Network Latency Tolerance of HPC Applications with Linear Programming

Authors: Shen, Siyuan; Huang, Langwen; Chrapek, Marcin; Schneider, Timo; Dayal, Jai; Gajbe, Manisha; Wisniewski, Robert; +1 Authors

LLAMP: Assessing Network Latency Tolerance of HPC Applications with Linear Programming

Abstract

The shift towards high-bandwidth networks driven by AI workloads in data centers and HPC clusters has unintentionally aggravated network latency, adversely affecting the performance of communication-intensive HPC applications. As large-scale MPI applications often exhibit significant differences in their network latency tolerance, it is crucial to accurately determine the extent of network latency an application can withstand without significant performance degradation. Current approaches to assessing this metric often rely on specialized hardware or network simulators, which can be inflexible and time-consuming. In response, we introduce LLAMP, a novel toolchain that offers an efficient, analytical approach to evaluating HPC applications' network latency tolerance using the LogGPS model and linear programming. LLAMP equips software developers and network architects with essential insights for optimizing HPC infrastructures and strategically deploying applications to minimize latency impacts. Through our validation on a variety of MPI applications like MILC, LULESH, and LAMMPS, we demonstrate our tool's high accuracy, with relative prediction errors generally below 2%. Additionally, we include a case study of the ICON weather and climate model to illustrate LLAMP's broad applicability in evaluating collective algorithms and network topologies.

19 pages

Keywords

Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), Performance (cs.PF), FOS: Computer and information sciences, Computer Science - Performance, Computer Science - Distributed, Parallel, and Cluster Computing, C.4, Distributed, Parallel, and Cluster Computing (cs.DC), Network latency tolerance; linear programming; MPI applications; high-performance computing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Funded by
Related to Research communities