
ABSTRACTAtmospheric duct propagation has a significant influence on the performance of wireless communication and radar systems in the maritime environment that makes it essential to master the detailed knowledge of the atmospheric refractivity profile. Automatic identification system (AIS) is a maritime navigation safety communication system that operates in the very high frequency mobile band and the propagation path of AIS signals will be influenced by different atmospheric conditions. In this paper, a new refractivity estimation method based on the AIS signal level is proposed and the Levy flight quantum-behaved particle swarm optimization (LFQPSO) algorithm is presented and applied in the new estimation method to estimate the surface based duct parameters. Numerical simulations demonstrate that the LFQPSO algorithmhas good robustness and the new refractivity estimation method based on the AIS signal level can provide near-real-time estimation ofatmospheric refractivity.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
