Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2014 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2014
HKU Scholars Hub
Article . 2014
Data sources: HKU Scholars Hub
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adenosine-to-Inosine RNA Editing Mediated by ADARs in Esophageal Squamous Cell Carcinoma

Authors: Qin, Y.-R.; Qiao, J.-J.; Chan, T.H.M.; Zhu, Y.-H.; Li, F.-F.; Liu, H.; Fei, J.; +3 Authors

Adenosine-to-Inosine RNA Editing Mediated by ADARs in Esophageal Squamous Cell Carcinoma

Abstract

Abstract Esophageal squamous cell carcinoma (ESCC), the major histologic form of esophageal cancer, is a heterogeneous tumor displaying a complex variety of genetic and epigenetic changes. Aberrant RNA editing of adenosine-to-inosine (A-to-I), as it is catalyzed by adenosine deaminases acting on RNA (ADAR), represents a common posttranscriptional modification in certain human diseases. In this study, we investigated the status and role of ADARs and altered A-to-I RNA editing in ESCC tumorigenesis. Among the three ADAR enzymes expressed in human cells, only ADAR1 was overexpressed in primary ESCC tumors. ADAR1 overexpression was due to gene amplification. Patients with ESCC with tumoral overexpression of ADAR1 displayed a poor prognosis. In vitro and in vivo functional assays established that ADAR1 functions as an oncogene during ESCC progression. Differential expression of ADAR1 resulted in altered gene-specific editing activities, as reflected by hyperediting of FLNB and AZIN1 messages in primary ESCC. Notably, the edited form of AZIN1 conferred a gain-of-function phenotype associated with aggressive tumor behavior. Our findings reveal that altered gene-specific A-to-I editing events mediated by ADAR1 drive the development of ESCC, with potential implications in diagnosis, prognosis, and treatment of this disease. Cancer Res; 74(3); 840–51. ©2013 AACR.

Countries
Singapore, Singapore, China (People's Republic of)
Related Organizations
Keywords

Adenosine, Esophageal Neoplasms, Adenosine Deaminase, 610, Esophageal Neoplasms - genetics - metabolism - mortality, Gene Expression, Cohort Studies, Cell Line, Tumor, Adenosine Deaminase - genetics - metabolism, Humans, Squamous Cell - genetics - metabolism - mortality, Oncogene Proteins, Carcinoma, RNA-Binding Proteins, Inosine, Gene Expression Regulation, Neoplastic, Carcinoma, Squamous Cell - genetics - metabolism - mortality, Carcinoma, Squamous Cell, Disease Progression, Esophageal Squamous Cell Carcinoma, RNA Editing, Carrier Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    154
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
154
Top 1%
Top 10%
Top 1%
bronze