Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://publications....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5220/000725...
Article
License: CC BY NC ND
Data sources: UnpayWall
https://doi.org/10.5220/000725...
Article . 2019 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.5220/000725...
Article . 2019 . Peer-reviewed
Data sources: Crossref
TU Delft Repository
Conference object . 2019
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Virtual Prototyping of Large-scale IoT Control Systems using Domain-specific Languages

Authors: Verriet, J.; Buit, L.; Doornbos, R.; Huijbrechts, B.; Sevo, K.; Sleuters, J.; Verberkt, M.;

Virtual Prototyping of Large-scale IoT Control Systems using Domain-specific Languages

Abstract

IoT applications and other distributed control applications are characterized by the interaction of many hardware and software components. The inherent complexity of the distributed functionality introduces challenges on the detection and correction of issues related to functionality or performance, which are only possible to do after system prototypes or pilot installations have been built. Correcting these issues is typically very expensive, which could have been avoided by earlier detection. This paper makes four main contributions. (1) It presents a virtual prototyping approach to specify and analyze distributed control applications. The approach is based on a domain model, which can be configured for a specific application. It consists of eight domainspecific languages (DSLs), each describing one system aspect. (2) The DSLs provide each stakeholder in the application’s lifecycle a natural and comprehensible way to describe his/her concerns in an unambiguous manner. (3) The paper shows how the DSLs are used to automatically detect common configuration errors and erroneous behavior. (4) The virtual prototyping approach is demonstrated using a lighting domain case study, in which the control system of an office floor is specified and analyzed.

Related Organizations
Keywords

Model checking, Industrial Innovation, Virtual prototyping, System validation, Model transformations, IoT systems, Distributed control systems, Domain-specific languages, Lighting systems, Simulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Top 10%
Top 10%
hybrid