Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Statistical Methods & Applications
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel clustering method with maximum number of ordered centroids and stable clusters for optimal ranking in a univariate setting

Authors: Mariaelena Bottazzi Schenone; Elena Grimaccia; Maurizio Vichi;

A novel clustering method with maximum number of ordered centroids and stable clusters for optimal ranking in a univariate setting

Abstract

Abstract This paper proposes an innovative method to determine the optimal ranking of a set of univariate units in the maximum number of clusters with sortable centroids. Units within the identified clusters are considered equivalent, while units between clusters show a significant difference in terms of the variable in study. By means of bootstrap estimates of clusters’ centroids, the proposed procedure allows to identify the optimal number of “well-separated” classes, adding on the deterministic results. Moreover, the bootstrap estimates of units’ membership matrices allow us to define an optimal ranking of these units within the identified clusters: the obtained clusters are ranked so that units within each cluster are represented by the rank of the cluster they belong to. Centroids and membership matrices are obtained by applying a specialized K-means clustering on one dimensional data. This methodology is particularly useful in a framework where the aim is to rank units in equivalence classes in a univariate setting. The performance of the presented methodology is evaluated through a simulation study and compared with some widely used techniques to choose the number of clusters and with Gaussian mixture models. Moreover, two real data applications provide insights on the rank of European cities according to their air pollution level and on the rank of National Basketball Association players in terms of their on-court performance. A graphic visualization of the obtained ranking allows to immediately appreciate both the resulting partition of units into equivalence classes and its stability measurement.

Keywords

one-dimensional data clustering; ranking in equivalence classes; optimal number of clusters; bootstrap; k-means clustering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid