Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Sele...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Content-Dependent 3-D Convolutional Sparse Coding for Hyperspectral Image Denoising

Authors: Haitao Yin; Hao Chen;

Deep Content-Dependent 3-D Convolutional Sparse Coding for Hyperspectral Image Denoising

Abstract

Despite the significant successes in hyperspectral image (HSI) denoising, pure data-driven HSI denoising networks still suffer from limited understanding of inference. Deep unfolding (DU) is a feasible way to improve the interpretability of deep network. However, the specialized spatial-spectral DU methods are seldom studied, and the simple spatial-spectral extension leads to unpleasant spectral distortion. To tackle these issues, we first propose a content-dependent 3-D convolutional sparse coding (CD-CSC) to jointly represent spatial-spectral feature. Specifically, the 3-D filters used in CD-CSC for each HSI are unique, which are determined by linear combination of base 3-D filters. Then, we develop a novel CD-CSC-inspired DU network for HSI denoising, called CD-CSCNet. Furthermore, by exploiting the lightweight of separable convolution and the adaptability of hypernetwork, we design a separable content-dependent 3D Convolution (SCD-Conv) to carry out CD-CSCNet. SCD-Conv not only reduces computational complexity, but also can be viewed as the convolutional sparse coding with spatial and spectral dictionaries. Extensive experimental results on the ICVL, Zhuhai-1 OHS-3C, and GaoFen-5 datasets demonstrate that CD-CSCNet outperforms several recent pure data-driven and DU-based networks quantitatively and visually.

Related Organizations
Keywords

separable convolution, Ocean engineering, deep network, Hyperspectral image denoising, QC801-809, Geophysics. Cosmic physics, convolutional sparse coding, deep unfolding, TC1501-1800, 3-D convolution

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold