Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scheduling Transactions in Replicated Distributed Software Transactional Memory

Authors: null Junwhan Kim; B. Ravindran;

Scheduling Transactions in Replicated Distributed Software Transactional Memory

Abstract

Distributed software transactional memory (DTM) is an emerging, alternative concurrency control model for distributed systems that promises to alleviate the difficulties of lock-based distributed synchronization. Object replication can improve concurrency and achieve fault-tolerance in DTM, but may incur high communication overhead (in metric-space networks) to ensure one-copy serializability. We consider metric-space networks and develop a cluster-based object replication model for DTM. In this model, object replicas are distributed to clusters of nodes, where clusters are determined based on distance between nodes, to maximize locality and fault-tolerance and to minimize communication overhead. We develop a transactional scheduler for this model, called CTS. CTS enqueues live transactions and identifies some of the transactions that must be aborted in advance to enhance concurrency of the other transactions over clusters, reducing a significant number of future conflicts. Our implementation and experimental evaluation reveals that CTS improves transactional throughput over state-of-the-art replicated DTM solutions by as much as (average) 1.55 x and 1.73 x under low and high contention, respectively.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!