Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Asian Journal of Atm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Asian Journal of Atmospheric Environment
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Asian Journal of Atmospheric Environment
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Missing Value Imputation for PM10 Concentration in Sabah using Nearest Neighbour Method (NNM) and Expectation-Maximization (EM) Algorithm

Authors: Muhammad Izzuddin Rumaling; Chee, Fuei Pien; Jedol Dayou; Chang, Jackson Hian Wui; Steven Soon Kai Kong; Justin Sentian;

Missing Value Imputation for PM10 Concentration in Sabah using Nearest Neighbour Method (NNM) and Expectation-Maximization (EM) Algorithm

Abstract

Abstract Missing data in large data analysis has affected further analysis conducted on dataset. To fill in missing data, Nearest Neighbour Method (NNM) and Expectation Maximization (EM) algorithm are the two most widely used methods. Thus, this research aims to compare both methods by imputing missing data of air quality in five monitoring stations (CA0030, CA0039, CA0042, CA0049, CA0050) in Sabah, Malaysia. PM10 (particulate matter with aerodynamic size below 10 microns) dataset in the range from 2003–2007 (Part A) and 2008–2012 (Part B) are used in this research. To make performance evaluation possible, missing data is introduced in the datasets at 5 different levels (5%, 10%, 15%, 25% and 40%). The missing data is imputed by using both NNM and EM algorithm. The performance of both data imputation methods is evaluated using performance indicators (RMSE, MAE, IOA, COD) and regression analysis. Based on performance indicators and regression analysis, NNM performs better compared to EM in imputing data for stations CA0039, CA0042 and CA0049. This may be due to air quality data missing at random (MAR). However, this is not the case for CA0050 and part B of CA0030. This may be due to fluctuation that could not be detected by NNM. Accuracy evaluation using Mean Absolute Percentage Error (MAPE) shows that NNM is more accurate imputation method for most of the cases.

Related Organizations
Keywords

particulate matter, Environmental sciences, missing data, nearest neighbour method, Q Science (General), GE1-350, performance indicators, 310, Environmental technology. Sanitary engineering, TD1-1066, expectation maximization algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
gold