
Abstract Tracking the wear states of tools on punching machines is necessary to reduce scrap rates. In this paper, we propose a method to estimate wear state of punches using Temporal Convolutional Network Autoencoder (TCN-Autoencoder), one of the deep learning techniques for learning time-series information with convolutional architecture. Approach involves inputting raw time-series information, such as sensor, vibration and audio data, into TCN-Autoencoder, and calculating the reconstruction error between the output and the input data. The reconstruction error is used as “anomaly score” and indicates the distance from the normal state. By training TCN-Autoencoder only with data annotated as “normal” state, the reconstruction error becomes larger when inputting abnormal state data, which corresponds the wear state of the punch. Performance is evaluated on experimental measurement data that spans various wear states of the punch. The results showed our model can estimate anomalies faster than the conventional machine-learning-based anomaly estimation method, while maintaining the high estimation accuracy. This is due to TCN-Autoencoder being able to learn from both frequency and time domain.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
