Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal on Interacti...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal on Interactive Systems
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal on Interactive Systems
Article . 2025
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Group Fairness in Recommendation Systems: The Importance of Hierarchical Clustering in Identifying Latent Groups in MovieLens and Amazon Books

Authors: Rafael Vargas Mesquita dos Santos; Giovanni Ventorim Comarela;

Group Fairness in Recommendation Systems: The Importance of Hierarchical Clustering in Identifying Latent Groups in MovieLens and Amazon Books

Abstract

Fairness in recommendation systems is a critical area of study, particularly when addressing group disparities based on sensitive attributes such as gender, age, activity levels, or user location. This study also explores latent groups identified through hierarchical clustering techniques. The goal is to assess group unfairness across various clustering configurations and collaborative filtering strategies to promote equitable and inclusive recommendation systems. We applied collaborative filtering techniques, including ALS, KNN, and NMF, and evaluated group unfairness using metrics such as Rgrp for different clustering configurations (e.g., gender, age, activity level, location, and hierarchical clustering) in two datasets: MovieLens and Amazon Books. Hierarchical clustering yielded the highest group unfairness, with ALS and NMF reaching Rgrp values of 0.0062 and 0.0049 in MovieLens, and NMF and KNN peaking at 0.0972 and 0.0220 in Amazon Books. These results reveal significant fairness disparities across both latent and observable user groups, reinforcing the importance of selecting appropriate filtering strategies and clustering methods to build fair and inclusive recommendation systems.

Keywords

TK7885-7895, QA76.75-76.765, Computer engineering. Computer hardware, Agglomerative Hierarchical Clustering, Latent Groups, Recommendation System, Group Fairness, Computer software

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold