Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Public Health
Article . 2020 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Human centered AI design for clinical monitoring and data management

Authors: Adnan, Hassan Sami; Matthews, Sam; Hackl, M.; Das, P. P.; Manaswini, Manisha; Gadamsetti, S.; Filali, Maroua; +3 Authors

Human centered AI design for clinical monitoring and data management

Abstract

Abstract Background In clinical settings, significant resources are spent on data collection and monitoring patients' health parameters to improve decision-making and provide better care. With increased digitization, the healthcare sector is shifting towards implementing digital technologies for data management and in administration. New technologies offer better treatment opportunities and streamline clinical workflow, but the complexity can cause ineffectiveness, frustration, and errors. To address this, we believe digital solutions alone are not sufficient. Therefore, we take a human-centred design approach for AI development, and apply systems engineering methods to identify system leverage points. We demonstrate how automation enables monitoring clinical parameters, using existing non-intrusive sensor technology, resulting in more resources toward patient care. Furthermore, we provide a framework on digitization of clinical data for integration with data management. Methods Activities of Daily Living (ADLs) are essential parameters, necessary for evaluating patients in mental health wards. Ideally logging the parameters should take place at hourly intervals; however, time constraints and lack of resources restrict the nursing staff to consolidating the overall impression during the day, relying on what they recall. Using design methods, sensors (e.g. infrared, proximity, pressure) are used to automate the acquisition of data for machine learning that correspond to the ADLs, considering privacy and other medical requirements. Results We present a concept of a room with sensors that can be deployed in clinical settings. Sensor data log ADLs, and provide machine learning data. A theoretical framework demonstrates how collected data can be used in electronic/medical health records. Conclusions Data acquisition of the ADLs with automation enable variable specificity and sensitivity on-demand. It further facilitates interoperability and provides data for machine learning. Key messages Our research demonstrates automated data acquisition techniques for clinical monitoring. Human centered AI design approach enables on-demand analysis of ADLs for mental health treatment.

Keywords

ddc:610, Department Sport- und Gesundheitswissenschaften, Hasso-Plattner-Institut für Digital Engineering gGmbH

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold