Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Balkan Journal of El...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Balkan Journal of Electrical and Computer Engineering
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Brain Decoding over the MEG Signals Using Riemannian Approach and Machine Learning

Authors: Zeynep ÖZER; Onursal ÇETİN; Kutlucan GÖRÜR; Feyzullah TEMURTAŞ;

Brain Decoding over the MEG Signals Using Riemannian Approach and Machine Learning

Abstract

Brain decoding is an emerging approach for understanding the face perception mechanism in the human brain. Face visual stimuli and perception mechanism are considered as a challenging ongoing research of the neuroscience field. In this study, face/scrambled face visual stimulations were implemented over the sixteen participants to be decoded the face or scrambled face classification using machine learning (ML) algorithms via magnetoencephalography (MEG) signals. This noninvasive and high spatial/temporal resolution signal is a neurophysiological technique which measures the magnetic fields generated by the neuronal activity of the brain. The Riemannian approach was used as a highly promising feature extraction technique. Then Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN) were employed as deep learning algorithms, Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) were implemented as shallow algorithms. The improved classification performances are very encouraging, especially for deep learning algorithms. The LSTM and GRU have achieved 92.99% and 91.66% accuracy and 0.977 and 0.973 of the area under the curve (AUC) scores, respectively. Moreover, CNN has yielded 90.62% accuracy. As our best knowledge, the improved outcomes and the usage of the deep learning on the MEG dataset signals from 16 participants are critical to expand the literature of brain decoding after visual stimuli. And this study is the first attempt with these methods in systematic comparison. Moreover, MEG-based Brain-Computer Interface (BCI) approaches may also be implemented for Internet of Things (IoT) applications, including biometric authentication, thanks to the specific stimuli of individual’s brainwaves.

Related Organizations
Keywords

Magnetoencephalography;Brain Decoding;Riemannian Approach;Deep Learning., Yapay Zeka, Artificial Intelligence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold