Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Explore Bristol Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
Neural Computation
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Relating Human Error–Based Learning to Modern Deep RL Algorithms

Relating human error-based learning to modern deep RL algorithms
Authors: Garibbo, Michele; Ludwig, Casimir J H; Lepora, Nathan F; Aitchison, Laurence;

Relating Human Error–Based Learning to Modern Deep RL Algorithms

Abstract

Abstract In human error–based learning, the size and direction of a scalar error (i.e., the “directed error”) are used to update future actions. Modern deep reinforcement learning (RL) methods perform a similar operation but in terms of scalar rewards. Despite this similarity, the relationship between action updates of deep RL and human error–based learning has yet to be investigated. Here, we systematically compare the three major families of deep RL algorithms to human error–based learning. We show that all three deep RL approaches are qualitatively different from human error–based learning, as assessed by a mirror-reversal perturbation experiment. To bridge this gap, we developed an alternative deep RL algorithm inspired by human error–based learning, model-based deterministic policy gradients (MB-DPG). We showed that MB-DPG captures human error–based learning under mirror-reversal and rotational perturbations and that MB-DPG learns faster than canonical model-free algorithms on complex arm-based reaching tasks, while being more robust to (forward) model misspecification than model-based RL.

Related Organizations
Keywords

name=Mind and Brain (Psychological Science), learning, Memory and learning in psychology, /dk/atira/pure/core/keywords/mind_and_brain_psychological_science_, 004, /dk/atira/pure/core/keywords/cognitive_science, /dk/atira/pure/core/keywords/mind_and_brain_psychological_science_; name=Mind and Brain (Psychological Science), Deep Learning, name=Cognitive Science, /dk/atira/pure/core/keywords/cognitive_science; name=Cognitive Science, Humans, Learning, Neural Networks, Computer, Reinforcement, Psychology, human error, Algorithms, Artificial neural networks and deep learning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green