
arXiv: 2409.00102
This article proposes a new conceptual framework called collective predictive coding as a model of science (CPC-MS ) to formalize and understand scientific activities. Building on the idea of CPC originally developed to explain symbol emergence, CPC-MS models science as a decentralized Bayesian inference process carried out by a community of agents. The framework describes how individual scientists’ partial observations and internal representations are integrated through communication and peer review to produce shared external scientific knowledge. Key aspects of scientific practice like experimentation, hypothesis formation, theory development and paradigm shifts are mapped onto components of the probabilistic graphical model. This article discusses how CPC-MS provides insights into issues like social objectivity in science, scientific progress and the potential impacts of artificial intelligence on research. The generative view of science offers a unified way to analyse scientific activities and could inform efforts to automate aspects of the scientific process. Overall, CPC-MS aims to provide an intuitive yet formal model of science as a collective cognitive activity.
Physics - Physics and Society, Science, Society and Policy, collective predictive coding, Science, multi-agent system, Bayesian inference, Q, FOS: Physical sciences, Physics and Society (physics.soc-ph), model of science
Physics - Physics and Society, Science, Society and Policy, collective predictive coding, Science, multi-agent system, Bayesian inference, Q, FOS: Physical sciences, Physics and Society (physics.soc-ph), model of science
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
