
Abstract Solving convex semi-infinite programming (SIP) problems is challenging when the separation problem, namely, the problem of finding the most violated constraint, is computationally hard. We propose to tackle this difficulty by solving the separation problem approximately, i.e., by using an inexact oracle. Our focus lies in two algorithms for SIP, namely the cutting-planes (CP) and the inner-outer approximation (IOA) algorithms. We prove the CP convergence rate to be in O(1/k), where k is the number of calls to the limited-accuracy oracle, if the objective function is strongly convex. Compared to the CP algorithm, the advantage of the IOA algorithm is the feasibility of its iterates. In the case of a semi-infinite program with a Quadratically Constrained Quadratic Programming separation problem, we prove the convergence of the IOA algorithm toward an optimal solution of the SIP problem despite the oracle’s inexactness.
inexact oracle, Optimization and Control (math.OC), Numerical methods for mathematical programming, optimization and variational techniques, Semi-infinite programming; Inexact oracle; Separation problem, FOS: Mathematics, Mathematical programming, semi-infinite programming, Existence theories in calculus of variations and optimal control, separation problem, Mathematics - Optimization and Control
inexact oracle, Optimization and Control (math.OC), Numerical methods for mathematical programming, optimization and variational techniques, Semi-infinite programming; Inexact oracle; Separation problem, FOS: Mathematics, Mathematical programming, semi-infinite programming, Existence theories in calculus of variations and optimal control, separation problem, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
