Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal of C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
British Journal of Cancer
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
License: CC BY NC SA
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DI-fusion
Article . 2013 . Peer-reviewed
Data sources: DI-fusion
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal of Cancer
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting

Authors: Peeters, D J E DJ; De Laere, Bram; Van den Eynden, Gert; Van Laere, Steven; Rothé, Françoise; Ignatiadis, Michail; Sieuwerts, Anieta M; +7 Authors

Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting

Abstract

Molecular characterisation of single circulating tumour cells (CTCs) holds considerable promise for predictive biomarker assessment and to explore CTC heterogeneity. We evaluate a new method, the DEPArray system, that allows the dielectrophoretic manipulation and isolation of single and 100% purified groups of CTCs from pre-enriched blood samples and explore the feasibility of their molecular characterisation.Samples containing known numbers of two cell populations were used to assess cell loss during sample loading. Cultured breast cancer cells were isolated from spiked blood samples using CellSearch CTC and Profile kits. Single tumour cells and groups of up to 10 tumour cells were recovered with the DEPArray system and subjected to transcriptional and mutation analysis.On average, 40% cell loss was observed when loading samples to the DEPArray system. Expected mutations in clinically relevant markers could be obtained for 60% of single recovered tumour cells and all groups of tumour cells. Reliable gene expression profiles were obtained from single cells and groups of up to 10 cells for 2 out of 3 spiked breast cancer cell lines.We describe a semiautomated workflow for the isolation of small groups of 1 to 10 tumour cells from whole blood samples and provide proof of principle for the feasibility of their comprehensive molecular characterisation.

Countries
Netherlands, Belgium
Keywords

Breast Neoplasms, Cell Separation, Neoplastic Cells, SDG 3 - Good Health and Well-being, Biomarkers, Tumor, Humans, RSM MKT, Mutation -- genetics, Molecular Diagnostics, Breast Neoplasms -- blood -- genetics -- pathology, Biomarkers, Tumor -- blood -- genetics, Cell Separation -- instrumentation -- methods, Gene Expression Profiling, Circulating -- pathology, Médecine pathologie humaine, Sciences bio-médicales et agricoles, Neoplastic Cells, Circulating, Cancérologie, Mutation, Neoplastic Cells, Circulating -- pathology, Female, Human medicine, EMC MM-03-86-01, Tumor -- blood -- genetics, Biomarkers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    144
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
144
Top 10%
Top 10%
Top 1%
Green
hybrid