Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advanced Industrial ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Industrial and Engineering Polymer Research
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Triethylenetetramine-modified ammonium polyphosphate as charring agent for enhanced flame retardancy in ethylene vinyl acetate copolymer

Authors: Yi-Song Wang; Wen Ye; Yan Jiang; De-Yi Wang;

Triethylenetetramine-modified ammonium polyphosphate as charring agent for enhanced flame retardancy in ethylene vinyl acetate copolymer

Abstract

In this study, a novel charring agent (TETA-APP) was prepared via ion exchange reaction between triethylenetetramine (TETA) and ammonium polyphosphate (APP). It was characterized by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy analysis (SEM), X-ray photoelectron analysis (XPS), and X-ray diffraction analysis (XRD), etc. Furthermore, the obtained TETA-APP was blended with APP to act as flame retardant in ethylene vinyl acetate copolymer (EVA), and the comprehensive properties of the composites were tested. Compared with IFR@EVA-1 (30 wt% APP in EVA), IFR@EVA-3 with 15 wt% TETA-APP and 15 wt% APP in EVA resin resulting in 32.1 % of limiting oxygen index (LOI) and V-0 grade of vertical burning test (UL-94), and showed a significant decrease in both the values of pHRR (reduced by 54.5 %) and SPR (reduced by 46.0 %) in cone calorimetric (CC) analysis. These results demonstrated that TETA-APP performed obviously synergistic effect in APP/EVA system. Then thermogravimetric-infrared spectroscopy (TG-FTIR) and Raman spectroscopy were used to further investigate the flame-retardant mechanism. In gaseous phase, the degraded CO2, NH3 and H2O acted as diluents reducing oxygen density, and the formed PO· performed quenching effect to capture free radicals. In condensed phase, a large number of -P-N-C-, -P-C- bonds produced by the decomposition of TETA-APP were helpful for forming a more stable char layer, which restricted the exchange of heat and flammable pyrolysates. Both the effects in gaseous and condensed phases were the principal reason for the much better flame retardancy in EVA resin.

Keywords

TP1080-1185, Halogen-free flame-retardant, Ethylene vinyl acetate copolymer (EVA), Triethylenetetramine modified ammonium polyphosphate (TETA-APP), Polymers and polymer manufacture, TA1-2040, Engineering (General). Civil engineering (General), Charring agent

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold