Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LUMC Scholarly Publi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medical Oncology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medical Oncology
Article . 2024
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The role of molecular biomarkers in recurrent glioblastoma trials: an assessment of the current trial landscape of genome-driven oncology

an assessment of the current trial landscape of genome-driven oncology
Authors: Opijnen, M.P. van; Vos, F.Y.F. de; Cuppen, E.; Geurts, M.; Maas, S.L.N.; Broekman, M.L.D.;

The role of molecular biomarkers in recurrent glioblastoma trials: an assessment of the current trial landscape of genome-driven oncology

Abstract

AbstractFor glioblastoma patients, the efficacy-targeted therapy is limited to date. Most of the molecular therapies previously studied are lacking efficacy in this population. More trials are needed to study the actual actionability of biomarkers in (recurrent) glioblastoma. This study aimed to assess the current clinical trial landscape to assess the role of molecular biomarkers in trials on recurrent glioblastoma treatment. The database ClinicalTrials.gov was used to identify not yet completed clinical trials on recurrent glioblastoma in adults. Recruiting studies were assessed to investigate the role of molecular criteria, which were retrieved as detailed as possible. Primary outcome was molecular criteria used as selection criteria for study participation. Next to this, details on moment and method of testing, and targets and drugs studied, were collected. In 76% (181/237) of the included studies, molecular criteria were not included in the study design. Of the remaining 56 studies, at least one specific genomic alteration as selection criterium for study participation was required in 33 (59%) studies. Alterations in EGFR, CDKN2A/B or C, CDK4/6, and RB were most frequently investigated, as were the corresponding drugs abemaciclib and ribociclib. Of the immunotherapies, CAR-T therapies were the most frequently studied therapies. Previously, genomics studies have revealed the presence of potentially actionable alterations in glioblastoma. Our study shows that the potential efficacy of targeted treatment is currently not translated into genome-driven trials in patients with recurrent glioblastoma. An intensification of genome-driven trials might help in providing evidence for (in)efficacy of targeted treatments.

Keywords

Brain Neoplasms/genetics, Original Paper, Clinical Trials as Topic, Brain Neoplasms, Molecular testing, Glioblastoma/genetics, Clinical trial, SDG 3 - Good Health and Well-being, Targeted treatment, Recurrent glioblastoma, Journal Article, Biomarkers, Tumor, Humans, Molecular Targeted Therapy, Genome-driven oncology, Biomarkers, Tumor/genetics, Neoplasm Recurrence, Local/genetics, Neoplasm Recurrence, Local, Glioblastoma, Molecular Targeted Therapy/methods

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
hybrid
Related to Research communities