Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Freibu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuroradiology
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuroradiology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuroradiology
Article . 2021
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accuracy and practical aspects of semi- and fully automatic segmentation methods for resected brain areas

Authors: Karin Gau; Charlotte S. M. Schmidt; Horst Urbach; Josef Zentner; Andreas Schulze-Bonhage; Christoph P. Kaller; Niels Alexander Foit;

Accuracy and practical aspects of semi- and fully automatic segmentation methods for resected brain areas

Abstract

AbstractPurposePrecise segmentation of brain lesions is essential for neurological research. Specifically, resection volume estimates can aid in the assessment of residual postoperative tissue, e.g. following surgery for glioma. Furthermore, behavioral lesion-symptom mapping in epilepsy relies on accurate delineation of surgical lesions. We sought to determine whether semi- and fully automatic segmentation methods can be applied to resected brain areas and which approach provides the most accurate and cost-efficient results.MethodsWe compared a semi-automatic (ITK-SNAP) with a fully automatic (lesion_GNB) method for segmentation of resected brain areas in terms of accuracy with manual segmentation serving as reference. Additionally, we evaluated processing times of all three methods. We used T1w, MRI-data of epilepsy patients (n = 27; 11 m; mean age 39 years, range 16–69) who underwent temporal lobe resections (17 left).ResultsThe semi-automatic approach yielded superior accuracy (p < 0.001) with a median Dice similarity coefficient (mDSC) of 0.78 and a median average Hausdorff distance (maHD) of 0.44 compared with the fully automatic approach (mDSC 0.58, maHD 1.32). There was no significant difference between the median percent volume difference of the two approaches (p > 0.05). Manual segmentation required more human input (30.41 min/subject) and therefore inferring significantly higher costs than semi- (3.27 min/subject) or fully automatic approaches (labor and cost approaching zero).ConclusionSemi-automatic segmentation offers the most accurate results in resected brain areas with a moderate amount of human input, thus representing a viable alternative compared with manual segmentation, especially for studies with large patient cohorts.

Related Organizations
Keywords

Adult, Male, Epilepsy, Adolescent, Genauigkeit, 610, Epilepsie, Middle Aged, Magnetic Resonance Imaging, 616, Image Interpretation, Computer-Assisted, Humans, Adolescent [MeSH] ; Female [MeSH] ; Aged [MeSH] ; Adult [MeSH] ; Accuracy ; Humans [MeSH] ; Segmentation ; Retrospective Studies [MeSH] ; Middle Aged [MeSH] ; Epilepsy/diagnostic imaging [MeSH] ; Epilepsy/surgery [MeSH] ; Male [MeSH] ; Image Interpretation, Computer-Assisted/methods [MeSH] ; Magnetic Resonance Imaging/methods [MeSH] ; Diagnostic Neuroradiology ; Epilepsy surgery ; Temporal lobe, Female, Segmentierung, Chirurgie, Temporallappen, Diagnostic Neuroradiology, Aged, Retrospective Studies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
Green
hybrid