Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computational Optimi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computational Optimization and Applications
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2023
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On solving difference of convex functions programs with linear complementarity constraints

Authors: Le Thi, Hoai An; Nguyen, Thi Minh Tam; Dinh, Tao Pham;

On solving difference of convex functions programs with linear complementarity constraints

Abstract

We address a large class of Mathematical Programs with Linear Complementarity Constraints which minimizes a continuously differentiable DC function (Difference of Convex functions) on a set defined by linear constraints and linear complementarity constraints, named Difference of Convex functions programs with Linear Complementarity Constraints. Using exact penalty techniques, we reformulate it, via four penalty functions, as standard Difference of Convex functions programs. The difference of convex functions algorithm (DCA), an efficient approach in nonconvex programming framework, is then developed to solve the resulting problems. Two particular cases are considered: quadratic problems with linear complementarity constraints and asymmetric eigenvalue complementarity problems. Numerical experiments are performed on several benchmark data, and the results show the effectiveness and the superiority of the proposed approaches comparing with some standard methods.

Country
France
Keywords

Difference of convex functions constraints, Difference of convex functions algorithm, 90C30, penalty function, difference of convex functions constraints, [MATH] Mathematics [math], 90C33, [INFO] Computer Science [cs], Nonconvex programming, global optimization, Penalty function, 90C90 (Mathematics Subject Classification), 90C26, difference of convex functions programming, Applications of mathematical programming, Nonlinear programming, mathematical program with linear complementarity constraints, [INFO]Computer Science [cs], Difference of convex functions programming, Mathematical program with linear complementarity constraints, [MATH]Mathematics [math], Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming), difference of convex functions algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!