Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Геофизический журналarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Геофизический журнал
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Геофизический журнал
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geofizicheskiy Zhurnal
Article . 2019
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The structure of void space of complex structured Bashkir carbonate reservoir rocks from the Opishnianske deposit of the DDD

Authors: Vyzhva, S.; Bezrodna, I.; Tkachenko, O.;

The structure of void space of complex structured Bashkir carbonate reservoir rocks from the Opishnianske deposit of the DDD

Abstract

The analysis of materials of well-logging of the wells of the Opishnanske deposit of the DDD was conducted for the purpose of the determination of their reservoir promise. The void structure of Bashkir carbonate reservoir rocks (productive horizon B-10) of 11 wells of the Opishnanske deposit of the DDD was defined for the first time in this article. The quantitative assessment of porosity types of reservoir rocks was done using a method, developed at the Taras Shevchenko University of Kyiv, which basis is a complex of well-logging methods that includes radioactivity and acoustic logging. Using well-logging methods, the potential reservoir rocks were distinguished, the forms of voids were calculated, and the contribution of different void types (intergranular, fracture, vuggy, secondary porosity) in the absolute porosity was assigned. As a result of the study, it was found that the fracture voids are present to a large extent only in layers, presented by water-saturated reservoir rocks, whose fracture porosity ratio acquire values from 0,2 % to 1,5 %. The fracture type of voids is present in layers with gas-saturated reservoirs in rocks with considerably lower concentrations (from 0,05 to 0,29 %). The vugggy voids are distinguished in almost a majority of layers, a vuggy porosity ratios in them reach 9,8 %. Based on the determination of type and concentration of voids in car-bonate reservoir rocks, the promise and predictive discharges of water and gas were determined by authors using a calculated parameter of the unit surface area of voids. The authors have identified the predictive yields higher than 1tonn per day in all wa-ter-saturated reservoir layers, and the highest were in two layers with daily flowrates of 307 and 3200 t/d in the well intervals of: 2816,4—2820 m (№ 12) and 2864—2870,4 m (№ 114). The highest predictive discharge of gas, that is 352 thousand cubic meters per day, is determined in a well 127 (the interval of 2773,8—2775,5 m). The gas discharges in three intervals of the well 127 are calculated within 140 thousand cubic meters per day (2762,4—2764,7, 2788—2790, 2822,8—2824,4 m). Increased discharges correlate with the presence of fracture and increased secondary porosity.

Keywords

well logging, Geography (General), QE1-996.5, Bashkir deposits, carbonate reservoir rock, G1-922, геофізичні дослідження свердловин; башкирські відкладення; карбонатная порода-колектор; структура пустотного простору, Geology, well logging; Bashkir deposits; carbonate reservoir rock; structure of voids, геофизические исследования скважин; башкирские отложения; карбонатная порода-коллектор; структура пустотного пространства, structure of voids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold