Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Repertorio Competenze e Ricerche
Part of book or chapter of book . 2024
https://doi.org/10.5194/egusph...
Article . 2025 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comprehensive Hydrological Modeling Tool for Flood Discharge Estimation in Sicilian Watersheds

Authors: Giuseppe Cipolla; Antonio Francipane; Dario Treppiedi; Calogero Mattina; Leonardo Valerio Noto;

Comprehensive Hydrological Modeling Tool for Flood Discharge Estimation in Sicilian Watersheds

Abstract

Designing hydraulic infrastructures and/or carry out a flood risk assessment analysis, as mandated by Directive 2007/60/EC of the European Parliament regarding the assessment and management of flood risk, needs estimating flood discharges for different return periods. In the current era, Geographic Information Systems (GIS) make more efficient the integration of spatially distributed data and advanced analytical tools for hydrological applications.This work introduces a Python-based tool that merges GIS functionalities (i.e., open-source geospatial libraries, such as native QGIS plugins, GDAL, SAGA) with hydrological modeling techniques, providing a comprehensive framework for watershed analysis aimed to derive synthetic flood hydrographs for specified return periods. The tool is composed of different modules, performing different operations: following the delineation of the watershed based on a user-specified outlet, the tool uses a regionalized approach to establish Depth-Duration-Frequency (DDF) curves and derives the synthetic Chicago hyetographs for specified return periods. The tool comprises a module for calculating runoff depths using the Curve Number method and another module where flow hydrographs are derived by using distributed unit hydrograph (D-UH) through a spatial representation of times of concentration, accounting for varying flow velocities within the watershed. Additionally, the tool allows for the simulation of the basin response to historical precipitation. In the present study, the tool underwent testing on catchments of Sicily (Italy) even if it is worth noting that the tool can be customized for application in various regions worldwide.

Keywords

Concentration time, Settore ICAR/02 - Costruzioni Idrauliche E Marittime E Idrologia, GIS, Hydrological modeling, Concentration time, GIS, Hydrological modeling, Python script for QGIS, Python script for QGIS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green