Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/361826...
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A New Information Complexity Measure for Multi-pass Streaming with Applications

Authors: Mark Braverman; Sumegha Garg; Qian Li; Shuo Wang; David P. Woodruff; Jiapeng Zhang;

A New Information Complexity Measure for Multi-pass Streaming with Applications

Abstract

We introduce a new notion of information complexity for multi-pass streaming problems and use it to resolve several important questions in data streams. In the coin problem, one sees a stream of $n$ i.i.d. uniform bits and one would like to compute the majority with constant advantage. We show that any constant pass algorithm must use $Ω(\log n)$ bits of memory, significantly extending an earlier $Ω(\log n)$ bit lower bound for single-pass algorithms of Braverman-Garg-Woodruff (FOCS, 2020). This also gives the first $Ω(\log n)$ bit lower bound for the problem of approximating a counter up to a constant factor in worst-case turnstile streams for more than one pass. In the needle problem, one either sees a stream of $n$ i.i.d. uniform samples from a domain $[t]$, or there is a randomly chosen needle $α\in[t]$ for which each item independently is chosen to equal $α$ with probability $p$, and is otherwise uniformly random in $[t]$. The problem of distinguishing these two cases is central to understanding the space complexity of the frequency moment estimation problem in random order streams. We show tight multi-pass space bounds for this problem for every $p < 1/\sqrt{n \log^3 n}$, resolving an open question of Lovett and Zhang (FOCS, 2023); even for $1$-pass our bounds are new. To show optimality, we improve both lower and upper bounds from existing results. Our information complexity framework significantly extends the toolkit for proving multi-pass streaming lower bounds, and we give a wide number of additional streaming applications of our lower bound techniques, including multi-pass lower bounds for $\ell_p$-norm estimation, $\ell_p$-point query and heavy hitters, and compressed sensing problems.

To appear in STOC 2024

Keywords

FOS: Computer and information sciences, Computer Science - Computational Complexity, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Computational Complexity (cs.CC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid