
Database Forensics (DBF) domain is a branch of digital forensics, concerned with the identification, collection, reconstruction, analysis, and documentation of database crimes. Different researchers have introduced several identification models to handle database crimes. Majority of proposed models are not specific and are redundant, which makes these models a problem because of the multidimensional nature and high diversity of database systems. Accordingly, using the metamodeling approach, the current study is aimed at proposing a unified identification model applicable to the database forensic field. The model integrates and harmonizes all exiting identification processes into a single abstract model, called Common Identification Process Model (CIPM). The model comprises six phases: 1) notifying an incident, 2) responding to the incident, 3) identification of the incident source, 4) verification of the incident, 5) isolation of the database server and 6) provision of an investigation environment. CIMP was found capable of helping the practitioners and newcomers to the forensics domain to control database crimes.
6 pages, 2 figures, 75 conferences
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
