Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Cardiov...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Cardiovascular Medicine
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hub Genes Identification, Small Molecule Compounds Prediction for Atrial Fibrillation and Diagnostic Model Construction Based on XGBoost Algorithm

Authors: Yang, Lingzhi; Chen, Yunwei; Huang, Wei;

Hub Genes Identification, Small Molecule Compounds Prediction for Atrial Fibrillation and Diagnostic Model Construction Based on XGBoost Algorithm

Abstract

BackgroundAtrial fibrillation (AF) is the most common sustained cardiac arrhythmia and engenders significant global health care burden. The underlying mechanisms of AF is remained to be revealed and current treatment options for AF have limitations. Besides, a detection system can help identify those at risk of developing AF and will enable personalized management.Materials and MethodsIn this study, we utilized the robust rank aggregation method to integrate six AF microarray datasets from the Gene Expression Omnibus database, and identified a set of differentially expressed genes between patients with AF and controls. Potential compounds were identified by mining the Connectivity Map database. Functional modules and closely-interacted clusters were identified using weighted gene co-expression network analysis and protein–protein interaction network, respectively. The overlapped hub genes were further filtered. Subsequent analyses were performed to analyze the function, biological features, and regulatory networks. Moreover, a reliable Machine Learning-based diagnostic model was constructed and visualized to clarify the diagnostic features of these genes.ResultsA total of 156 upregulated and 34 downregulated genes were identified, some of which had not been previously investigated. We showed that mitogen-activated protein kinase and epidermal growth factor receptor inhibitors were likely to mitigate AF based on Connectivity Map analysis. Four genes, including CXCL12, LTBP1, LOXL1, and IGFBP3, were identified as hub genes. CXCL12 was shown to play an important role in regulation of local inflammatory response and immune cell infiltration. Regulation of CXCL12 expression in AF was analyzed by constructing a transcription factor-miRNA-mRNA network. The Machine Learning-based diagnostic model generated in this study showed good efficacy and reliability.ConclusionKey genes involving in the pathogenesis of AF and potential therapeutic compounds for AF were identified. The biological features of CXCL12 in AF were investigated using integrative bioinformatics tools. The results suggested that CXCL12 might be a biomarker that could be used for distinguishing subsets of AF, and indicated that CXCL12 might be an important intermediate in the development of AF. A reliable Machine Learning-based diagnostic model was constructed. Our work improved understanding of the mechanisms of AF predisposition and progression, and identified potential therapeutic avenues for treatment of AF.

Keywords

weighted gene coexpression network analysis, rank robust aggregation, RC666-701, Connectivity map, Diseases of the circulatory (Cardiovascular) system, atrial fibrillation, the eXtreme Gradient Boosting algorithm, Cardiovascular Medicine, Cardiology and Cardiovascular Medicine, the Sharpley Additive exPlanations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold