Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Pavement Research and Technology
Article . 2017 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sensitivity quantification of airport concrete pavement stress responses associated with top-down and bottom-up cracking

Authors: Adel Rezaei-Tarahomi; Orhan Kaya; Halil Ceylan; Kasthurirangan Gopalakrishnan; Sunghwan Kim; David R. Brill;

Sensitivity quantification of airport concrete pavement stress responses associated with top-down and bottom-up cracking

Abstract

Abstract The Federal Aviation Administration’s (FAA’s) rigid pavement design standard employs the NIKE3D-FAA software to compute critical pavement responses of concrete airport pavement structures. NIKE3D-FAA is a modification of the original NIKE3D three-dimensional finite element analysis program developed by the Lawrence Livermore National Laboratory (LLNL) of the U.S. Department of Energy, and is currently used in the FAA’s FAARFIELD program. This study evaluated the sensitivity of NIKE3D-FAA rigid pavement responses with respect to top-down and bottom-up cracking. The analysis was conducted by positioning a Boeing 777-300ER (B777-300ER)aircraft at different locations (interior, corner, and edge of slab) as baseline while varying other NIKE3D-FAA inputs, including rigid pavement geometric features, mechanical properties of paving and foundation materials, equivalent temperature gradient and thermal coefficient of Portland Cement Concrete (PCC) layers. Several sensitivity charts were developed by examining the sensitivity of critical pavement responses to each input variation. Sensitivity evaluations were performed using a normalized sensitivity index (NSI) as the quantitative metric. Using such sensitivity evaluation, the most significant NIKE3D-FAA input parameters for generating an effective synthetic database that will lower computational cost for future modeling developments were identified.

Country
United States
Related Organizations
Keywords

Finite element analysis, DegreeDisciplines::Engineering::Civil and Environmental Engineering::Civil Engineering, Top down cracking, Airfield concrete pavement, 600, 624, Sensitivity analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Top 10%
gold