Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nonbinary LDPC-coded differential modulation with reduced-complexity decoding

Authors: Minghua Li; Baoming Bai; Xiao Ma;

Nonbinary LDPC-coded differential modulation with reduced-complexity decoding

Abstract

In this paper, we apply q-ary LDPC codes to differential modulation systems, and study the design and performance of the resultant coded modulation systems. Two low-complexity joint detection-decoding methods for noncoherent demodulation are proposed, in which the hard-message-passing strategy is used for a joint factor graph. The first method is based on the joint detection-decoding algorithm introduced in [1]; and the second one is developed by combining trellis-based differential detection and the hard-decision-based decoding of nonbinary LDPC codes. The Max-Log-MAP algorithm with soft-in hard-out is used for the differential detection. Simulation results show that both methods offer acceptable performances with greatly reduced complexities.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!