
Dans cet article, nous proposons une version améliorée d'un système DF à récepteur unique qui combine un schéma PLL avec l'algorithme MUSICAL pour obtenir des angles azimutaux et zénithaux. La nouvelle approche utilise un algorithme plus efficace pour éliminer les ambiguïtés typiques des schémas basés sur PLL. Nous effectuons plusieurs expériences pour évaluer les performances de l'algorithme. Parmi celles-ci, nous considérons des environnements complexes, tels que des canaux de communication sans fil où le signal reçu est corrompu par le bruit et souffre d'effets de distorsion, d'interférence et de trajets multiples. Le nouveau schéma est testé pour les signaux BPSK et QPSK dans ces conditions. Les résultats simulés montrent des performances supérieures de l'algorithme PLL proposé par rapport aux techniques précédentes.
En este artículo proponemos una versión mejorada de un sistema DF de receptor único que combina un esquema PLL con el algoritmo MUSIC para obtener ángulos azimutal y cenital. El nuevo enfoque utiliza un algoritmo más eficiente para eliminar las ambigüedades típicas de los esquemas basados en PLL. Realizamos varios experimentos para evaluar el rendimiento del algoritmo. Entre ellos, consideramos entornos complejos, como los canales de comunicación inalámbrica donde la señal recibida está corrompida por el ruido y sufre de distorsión, interferencia y efectos multitrayecto. El nuevo esquema se prueba para señales BPSK y QPSK en estas condiciones. Los resultados simulados muestran un rendimiento superior del algoritmo PLL propuesto en comparación con las técnicas anteriores.
In this paper we propose an improved version of a single receiver DF system that combines a PLL scheme with the MUSIC algorithm to obtain both azimuthal and zenithal angles.The new approach uses a more efficient algorithm to remove the typical ambiguities of PLL-based schemes.We carry out several experiments to assess the algorithm performance.Among them, we consider complex environments, such as wireless communication channels where the received signal is corrupted by noise and suffers from distortion, interference, and multipath effects.The new scheme is tested for BPSK and QPSK signals under these conditions.The simulated results show superior performance of the proposed PLL algorithm when compared to previous techniques.
نقترح في هذه الورقة نسخة محسنة من نظام DF لجهاز استقبال واحد يجمع بين مخطط PLL وخوارزمية الموسيقى للحصول على كل من الزوايا السمتية والسمتية. يستخدم النهج الجديد خوارزمية أكثر كفاءة لإزالة الغموض النموذجي للمخططات القائمة على PLL. نقوم بإجراء العديد من التجارب لتقييم أداء الخوارزمية. من بينها، نعتبر بيئات معقدة، مثل قنوات الاتصال اللاسلكية حيث تتلف الإشارة المستقبلة بسبب الضوضاء وتعاني من التشويه والتداخل والتأثيرات متعددة المسارات. يتم اختبار المخطط الجديد لإشارات BPSK و QPSK في ظل هذه الظروف. تُظهر النتائج المحاكاة أداءً متفوقًا لخوارزمية PLL المقترحة عند مقارنتها بالتقنيات السابقة.
Artificial intelligence, Phase-shift keying, Computational Mechanics, MUSIC and PLL, Geometry, Jitter, Noise (video), Interference (communication), Mathematical analysis, Bandwidth (computing), Phase-locked loop, Engineering, Azimuth, Adaptive Filtering in Non-Gaussian Signal Processing, DOA Estimation, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Image (mathematics), Amplifier, Electrical and Electronic Engineering, Distortion (music), Scheme (mathematics), Iterative Decoding, Electronic engineering, Multipath propagation, Direction Finding, Computer science, TK1-9971, Algorithm, Bit error rate, Channel (broadcasting), Signal Processing, Computer Science, Physical Sciences, Telecommunications, Electrical engineering. Electronics. Nuclear engineering, Decoding methods, Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing, Mathematics, Array Processing for Signal Localization and Estimation
Artificial intelligence, Phase-shift keying, Computational Mechanics, MUSIC and PLL, Geometry, Jitter, Noise (video), Interference (communication), Mathematical analysis, Bandwidth (computing), Phase-locked loop, Engineering, Azimuth, Adaptive Filtering in Non-Gaussian Signal Processing, DOA Estimation, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Image (mathematics), Amplifier, Electrical and Electronic Engineering, Distortion (music), Scheme (mathematics), Iterative Decoding, Electronic engineering, Multipath propagation, Direction Finding, Computer science, TK1-9971, Algorithm, Bit error rate, Channel (broadcasting), Signal Processing, Computer Science, Physical Sciences, Telecommunications, Electrical engineering. Electronics. Nuclear engineering, Decoding methods, Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing, Mathematics, Array Processing for Signal Localization and Estimation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
