Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Magnetic Resonance i...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Magnetic Resonance in Medicine
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Magnetic Resonance in Medicine
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
Data sources: PubMed Central
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The influence of spatial resolution on the spectral quality and quantification accuracy of whole‐brain MRSI at 1.5T, 3T, 7T, and 9.4T

Authors: Stanislav Motyka; Philipp Moser; Lukas Hingerl; Gilbert Hangel; Eva Heckova; Bernhard Strasser; Korbinian Eckstein; +5 Authors
APC: 1,831.46 EUR

The influence of spatial resolution on the spectral quality and quantification accuracy of whole‐brain MRSI at 1.5T, 3T, 7T, and 9.4T

Abstract

PurposeInhomogeneities in the static magnetic field (B0) deteriorate MRSI data quality by lowering the spectral resolution and SNR. MRSI with low spatial resolution is also prone to lipid bleeding. These problems are increasingly problematic at ultra‐high fields. An approach to tackling these challenges independent of B0‐shim hardware is to increase the spatial resolution. Therefore, we investigated the effect of improved spatial resolution on spectral quality and quantification at 4 field strengths.MethodsWhole‐brain MRSI data was simulated for 3 spatial resolutions and 4 B0s based on experimentally acquired MRI data and simulated free induction decay signals of metabolites and lipids. To compare the spectral quality and quantification, we derived SNR normalized to the voxel size (nSNR), linewidth and metabolite concentration ratios, their Cramer‐Rao‐lower‐bounds (CRLBs), and the absolute percentage error (APE) of estimated concentrations compared to the gold standard for the whole‐brain and 8 brain regions.ResultsAt 7T, we found up to a 3.4‐fold improved nSNR (in the frontal lobe) and a 2.8‐fold reduced linewidth (in the temporal lobe) for 1 cm3 versus 0.25 cm3 resolution. This effect was much more pronounced at higher and less homogenous B0 (1.6‐fold improved nSNR and 1.8‐fold improved linewidth in the parietal lobe at 3T). This had direct implications for quantification: the volume of reliably quantified spectra increased with resolution by 1.2‐fold and 1.5‐fold (when thresholded by CRLBs or APE, respectively).ConclusionMRSI data quality benefits from increased spatial resolution particularly at higher B0, and leads to more reliable metabolite quantification. In conjunction with the development of better B0 shimming hardware, this will enable robust whole‐brain MRSI at ultra‐high field.

Keywords

Adult, Male, T-2 RELAXATION-TIMES, MR spectroscopic imaging, Neuroimaging, SNR, Signal-To-Noise Ratio, PROTON, voxel size, Full Paper—Spectroscopic Methodology, VOXEL SIZE, Young Adult, B-0 inhomogeneities, spectral resolution, Image Interpretation, Computer-Assisted, Humans, FIELD, IN-VIVO, Phantoms, Imaging, Brain, MAGNETIC-RESONANCE-SPECTROSCOPY, Magnetic Resonance Imaging, H-1-NMR SPECTROSCOPY, BREAST-TISSUE, B-0 field dependency, Female, ORIENTATION, signal-to-noise

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green
hybrid