Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Image-based modeling and rendering of surfaces with arbitrary BRDFs

Authors: M.L. Koudelka; P.N. Belhumeur; S. Magda; D.J. Kriegman;

Image-based modeling and rendering of surfaces with arbitrary BRDFs

Abstract

A goal of image-based rendering is to synthesize as realistically as possible man made and natural objects. The paper presents a method for image-based modeling and rendering of objects with arbitrary (possibly anisotropic and spatially varying) BRDFs. An object is modeled by sampling the surface's incident light field to reconstruct a non-parametric apparent BRDF at each visible point on the surface, This can be used to render the object from the same viewpoint but under arbitrarily specified illumination. We demonstrate how these object models can be embedded in synthetic scenes and rendered under global illumination which captures the interreflections between real and synthetic objects. We also show how these image-based models can be automatically composited onto video footage with dynamic illumination so that the effects (shadows and shading) of the lighting on the composited object match those of the scene.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!