
Particulate matter (PM) in outdoor air pollution is one of the most critical factors that cause serious health problems and even deaths. One significant source of these particles are non-exhaust emissions, which refer to pollutants that come from sources, like brake, tire, and road wear other than a vehicle's exhaust system. This review focuses on the presence of non-exhaust particles on pavement, encompassing their classification, composition, evaluation, and mitigation. Based on extensive literature, it can be concluded that the quantity of non-exhaust emissions is affected by a combination of complex factors, such as vehicle speed, tire type, and pavement material. Non-exhaust particles can be classified into organic, inorganic, and metal matter, each requiring a distinct analysis and detection method. The effective approaches to managing non-exhaust emissions include water cleaning, utilizing functional pavement materials, and applying chemical reagents to alleviate emission capacity. Finally, this review recommends future research directions such as combining tire-road simulation with environmental monitoring equipment, in the hope that this article will have a positive impact on the mitigation of non-exhaust emissions.
Transportation engineering, Resuspended dust, TA1001-1280, Tire wear, Non-exhaust emissions, Brake wear, Pavement material, Road wear
Transportation engineering, Resuspended dust, TA1001-1280, Tire wear, Non-exhaust emissions, Brake wear, Pavement material, Road wear
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
