Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Numerical Methods in Engineering
Article . 1986 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nonlinear analysis and elastic–plastic load‐carrying behaviour of thin‐walled spatial beam structures with warping constraints

Nonlinear analysis and elastic-plastic load-carrying behaviour of thin- walled spatial beam structures with warping constraints
Authors: Wunderlich, W.; Obrecht, H.; Schrödter, V.;

Nonlinear analysis and elastic–plastic load‐carrying behaviour of thin‐walled spatial beam structures with warping constraints

Abstract

AbstractAn analysis of the elastic–plastic load‐carrying behaviour of thin‐walled spatial beam structures is presented. It is based on a beam theory valid for large displacements and rotations, which admits arbitrary cross‐sections, curved axes, initial imperfections, a general material description, and which fully accounts for the influence of warping constraints as well as the stress‐history dependence of the elastic–plastic shear moduli. An incremental updated Lagrangian viewpoint is adopted in the derivation of the basic beam equations from a generalized variational principle, and in the numerical solution procedure the displacement–finite element approach is followed. The associated tangential stiffness matrices are obtained by direct numerical integration of the governing incremental differential equations rather than through the use of shape functions in connection with a virtual work principle. Applications of the theory are given in which the influence of the loading configuration, material parameters, geometric nonlinearities and warping constraints on the load‐carrying behaviour and on the bifurcation and ultimate loads of thin‐walled beam structures is explored.

Related Organizations
Keywords

curved axes, influence of warping constraints, stress-history dependence of the elastic-plastic shear moduli, Finite element methods applied to problems in solid mechanics, elastic-plastic load-carrying behaviour, geometric nonlinearities, Anelastic fracture and damage, incremental updated Lagrangian viewpoint, thin-walled spatial beam structures, ultimate loads, governing incremental differential equations, arbitrary cross-sections, initial imperfections, loading configuration, generalized variational principle, displacement-finite element approach, rotations, material parameters, tangential stiffness matrices, bifurcation, general material description, direct numerical integration, Rods (beams, columns, shafts, arches, rings, etc.), large displacements

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!