Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Hyper-Heuristic Collaborative Multi-objective Evolutionary Algorithm

Authors: Gian Fritsche; Aurora Pozo;

A Hyper-Heuristic Collaborative Multi-objective Evolutionary Algorithm

Abstract

Many-objective optimization problems (MaOPs) are a great challenge for multi-objective evolutionary algorithms (MOEAs) and lately, several MOEAs have been proposed. Each MOEA uses different algorithmic components during the search process and performs differently. Therefore, there is no single algorithm able to achieve the best results in all problems. The collaboration of multiple MOEAs and the use of hyperheuristics can help to create a searchability able to achieve good results in a wide range of problem instances. In this context, this research proposes a model for collaboration of MOEAs guided by hyper-heuristic, called HHcMOEA. In HHcMOEA, the hyper-heuristic controls and mix MOEAs, automatically deciding which one to apply during the search process. On the other hand, HHcMOEA also incorporates exchange of information between the MOEAs. And, a fitness improvement rate metric, based on the R2 indicator to decide about the quality of the application of an MOEA. HHcMOEA is implemented using a set of MOEAs with diverse characteristics. An experiment is used to evaluate HHcMOEA in two versions: with and without information exchange. Although, the two versions of HHcMOEA are compared to the MOEAs applied alone. The empirical evaluation used a set of benchmark problems with different properties. The proposed model achieved the best result or equivalent to the best in almost all problems. Still, the results were deteriorated when the information exchange strategy was not used.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!