
pmid: 22386599
This paper aims to address the ability of self-organizing neural network models to manage real-time applications. Specifically, we introduce fAGNG (fast Autonomous Growing Neural Gas), a modified learning algorithm for the incremental model Growing Neural Gas (GNG) network. The Growing Neural Gas network with its attributes of growth, flexibility, rapid adaptation, and excellent quality of representation of the input space makes it a suitable model for real time applications. However, under time constraints GNG fails to produce the optimal topological map for any input data set. In contrast to existing algorithms, the proposed fAGNG algorithm introduces multiple neurons per iteration. The number of neurons inserted and input data generated is controlled autonomous and dynamically based on a priory or online learnt model. A detailed study of the topological preservation and quality of representation depending on the neural network parameter selection has been developed to find the best alternatives to represent different linear and non-linear input spaces under time restrictions or specific quality of representation requirements.
Neurons, Databases, Factual, Gestures, Models, Neurological, Nonlinear Dynamics, Artificial Intelligence, Computer Systems, Image Processing, Computer-Assisted, Linear Models, Humans, Regression Analysis, Neural Networks, Computer, Algorithms, Software
Neurons, Databases, Factual, Gestures, Models, Neurological, Nonlinear Dynamics, Artificial Intelligence, Computer Systems, Image Processing, Computer-Assisted, Linear Models, Humans, Regression Analysis, Neural Networks, Computer, Algorithms, Software
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
