Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Circuits and Systems II Analog and Digital Signal Processing
Article . 1998 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A generalized sampling theory without band-limiting constraints

Authors: Unser, Michael; Zerubia, Josiane;

A generalized sampling theory without band-limiting constraints

Abstract

Summary: We consider the problem of the reconstruction of a continuous-time function \(f(x)\in{\mathcal H}\) from the samples of the responses of \(m\) linear shift-invariant systems sampled at \(1/m\) the reconstruction rate. We extend Papoulis' generalized sampling theory in two important respects. First, our class of admissible input signals (typ. \({\mathcal H}=L_2\)) is considerably larger than the subspace of band-limited functions. Second, we use a more general specification of the reconstruction subspace \(V(\varphi)\), so that the output of the system can take the form of a band-limited function, a spline, or a wavelet expansion. Since we have enlarged the class of admissible input functions, we have to give up Shannon and Papoulis' principle of an exact reconstruction. Instead, we seek an approximation \(\widetilde f\in V(\varphi)\) that is consistent in the sense that it produces exactly the same measurements as the input of the system. This leads to a generalization of Papoulis' sampling theorem and a practical reconstruction algorithm that takes the form of a multivariate filter. In particular, we show that the corresponding system acts as a projector from \({\mathcal H}\) onto \(V(\varphi)\). We then propose two complementary polyphase and modulation domain interpretations of our solution. The polyphase representation leads to a simple understanding of our reconstruction algorithm in terms of a perfect reconstruction filter bank. The modulation analysis, on the other hand, is useful in providing the connection with Papoulis' earlier results for the band-limited case. Finally, we illustrate the general applicability of our theory by presenting new examples of interlaced and derivative sampling using splines.

Keywords

modulation, Switching theory, application of Boolean algebra; Boolean functions, polyphase representation, generalized sampling theory, reconstruction algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 1%
Top 10%
bronze