Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Intelligencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Intelligence
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new block matching algorithm based on stochastic fractal search

Authors: Abir Betka; Nadjiba Terki; Abida Toumi; Madina Hamiane; Amina Ourchani;

A new block matching algorithm based on stochastic fractal search

Abstract

Block matching algorithm is the most popular motion estimation technique, due to its simplicity of implementation and effectiveness. However, the algorithm suffers from a long computation time which affects its general performance. In order to achieve faster motion estimation, a new block matching algorithm based on stochastic fractal search, SFS, is proposed in this paper. SFS is a metaheuristic technique used to solve hard optimization problems in minimal time. In this work, two main contributions are presented. The first one consists of computing the motion vectors in a parallel structure as opposed to the other hierarchical metaheuristic block matching algorithms. When the video sequence frame is divided into blocks, a multi-population model of SFS is used to estimate the motion vectors of all blocks simultaneously. As a second contribution, the proposed algorithm is modified in order to enhance the results. In this modified version, four ideas are investigated. The random initialization, usually used in metaheuristics, is replaced by a fixed pattern. The initialized solutions are evaluated using a new fitness function that combines two matching criteria. The considered search space is controlled by a new adaptive window size strategy. A modified version of the fitness approximation method, which is known to reduce computation time but causes some degradation in the estimation accuracy, is proposed to balance between computation time and estimation accuracy. These ideas are evaluated in nine video sequences and the percentage improvement of each idea, in terms of estimation accuracy and computational complexity, is reported. The presented algorithms are then compared with other well-known block matching algorithms. The experimental results indicate that the proposed ideas improve the block matching performance, and show that the proposed algorithm outperforms many state-of-the-art methods.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!