
handle: 10044/1/105894
Particle swarm optimization (PSO) is a swarm-based optimization technique capable of solving different categories of optimization problems. Nevertheless, PSO has a serious exploration issue that makes it a difficult choice for multi-objectives constrained optimization problems (MCOP). At the same time, Multi-Protocol Label Switched (MPLS) and its extended version Generalized MPLS, has become an emerging network technology for modern and diverse applications. Therefore, as per MPLS and Generalized MPLS MCOP needs, it is important to find the Pareto based optimal solutions that guarantee the optimal resource utilization without compromising the quality of services (QoS) within the networks. The paper proposes a novel version of PSO, which includes a modified version of the Elitist Learning Strategy (ELS) in PSO that not only solves the existing exploration problem in PSO, but also produces optimal solutions with efficient convergence rates for different MPLS/ GMPLS network scales. The proposed approach has also been applied with two objective functions; the resource provisioning and the traffic load balancing costs. Our simulations and comparative study showed improved results of the proposed algorithm over the well-known optimization algorithms such as the “standard” PSO, Adaptive PSO, BAT, and Dolphin algorithm.
Electrical engineering. Electronics Nuclear engineering, Communication networks optimization, particle swarm optimization, swarm intelligence, TK, exploration problem, multi-objective constrained optimization, Electrical engineering. Electronics. Nuclear engineering, 650, 004, TK1-9971
Electrical engineering. Electronics Nuclear engineering, Communication networks optimization, particle swarm optimization, swarm intelligence, TK, exploration problem, multi-objective constrained optimization, Electrical engineering. Electronics. Nuclear engineering, 650, 004, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
