
pmid: 34378288
AbstractThe development of large pore single‐crystalline covalently linked organic frameworks is critical in revealing the detailed structure‐property relationship with substrates. One emergent approach is to photo‐crosslink hydrogen‐bonded molecular crystals. Introducing complementary hydrogen‐bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non‐porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non‐interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single‐crystalline hydrogen‐bonded crosslinked organic framework HCOF‐101. X‐ray diffraction analysis revealed HCOF‐101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E‐isomerization of the hydrazone took place reversibly within HCOF‐101, showcasing the potential use of HCOF‐101 for optical information storage.
hydrogen-bonded crosslinked organic framework, single-crystal to single-crystal transformation, photo-switch, heteromeric carboxylic acid dimer
hydrogen-bonded crosslinked organic framework, single-crystal to single-crystal transformation, photo-switch, heteromeric carboxylic acid dimer
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
