Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.pure.ed....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.pure.ed.ac.uk/ws/f...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Large-Scale Integration of MicroRNA and Gene Expression Data for Identification of Enriched MicroRNA–mRNA Associations in Biological Systems

Authors: Gunaratne, P.H.; Creighton, C.J.; Watson, M.; Tennakoon, J.B.;

Large-Scale Integration of MicroRNA and Gene Expression Data for Identification of Enriched MicroRNA–mRNA Associations in Biological Systems

Abstract

The discovery of microRNAs (miRNAs) revealed a hidden layer of gene regulation that is able to integrate multiple genes into biologically meaningful networks. A number of computational prediction programs have been developed to identify putative miRNA targets. Collectively, the miRNAs that have been discovered so far have the potential to target over 60% of genes in our genome. A minimum of six consecutive nucleotides in the 5'-seed (nucleotides 2-8) in the miRNA must bind through complimentary base pairing to the 3'-untranslated (3'-UTRs) of target genes. Given the small sequence match required, a given miRNA has the potential to target hundreds of genes and a given mRNA can have 0-50 miRNA binding sites. The low-throughput nature of the query design (gene by gene or miRNA by miRNA) and a fairly high rate of false positives and negatives uncovered by the limited number of functional studies remain as the major limitations. Programs that integrate genome-wide gene and miRNA expression data determined by microarray and/or next-generation sequencing (NGS) technologies with the publicly available target prediction algorithms are extremely valuable on two fronts. First, they allow the investigator to fully capitalize on all the data generated to reveal new genes and pathways underlying the biological process under study. Second, these programs allow the investigator to lift a small network of genes they are currently following into a larger network through the integrative properties of miRNAs. In this chapter, we discuss the latest methodologies for determining genome-wide miRNA and gene expression changes and three programs (Sigterms, CORNA, and MMIA) that allow the investigator to generate short lists of enriched miRNA:target mRNA candidates for large-scale miRNA:target mRNA validation. These efforts are essential for determining false positive and negative rates of existing algorithms and refining our knowledge on the rules of miRNA-mRNA relationships.

Related Organizations
Keywords

Base Sequence, Gene Expression Profiling, Computational Biology, Gene Expression, Microarray Analysis, MicroRNAs, Animals, Humans, RNA, Messenger, Algorithms Animals Base Sequence Computational Biology/ methods Gene Expression Gene Expression Profiling/instrumentation/methods Humans MicroRNAs/genetics/metabolism Microarray Analysis/instrumentation/methods RNA, Messenger/genetics/metabolism Software, Algorithms, Software

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%