
doi: 10.1017/jfm.2013.256
AbstractAnalysis based on the velocity potential free flow theory with the fully nonlinear boundary condition is made for the steady flow generated by a body gliding along a free surface. Employing the integral hodograph method, we derive analytical expressions for the complex velocity and for the derivative of the complex potential with the coordinate of a parameter plane. The boundary value problem is transformed into a system of two integro-differential equations for the velocity modulus on the free surface and for the slope of the wetted body surface in the parameter plane. The same slope and curvature of the free surface and the body surface at the intersection are adopted to determine the separation points of the flow and from the body. Numerical results are provided for a gliding flat plate and a circular cylinder. The pressure distribution along the body and the free surface shape are presented for a wide range of Froude numbers, within the limit for which the solution corresponding to non-breaking waves downstream can be obtained.
Water waves, gravity waves; dispersion and scattering, nonlinear interaction, surface gravity waves, waves/free-surface flows, Free-surface potential flows for incompressible inviscid fluids, Complex variables methods applied to problems in fluid mechanics
Water waves, gravity waves; dispersion and scattering, nonlinear interaction, surface gravity waves, waves/free-surface flows, Free-surface potential flows for incompressible inviscid fluids, Complex variables methods applied to problems in fluid mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
