
handle: 11454/15964 , 11454/32568
Modeling and simulation of real-world environments has in recent times being widely used. The modeling of environments whose examination in particular is difficult and the examination via the model becomes easier. The parameters of the modeled systems and the values they can obtain are quite large, and manual tuning is tedious and requires a lot of effort while it often it is almost impossible to get the desired results. For this reason, there is a need for the parameter space to be set. The studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in modeling and simulations. In this study, work has been done for a solution to be found to the problem of parameter tuning with swarm intelligence optimization algorithms Particle swarm optimization and Firefly algorithms. The performance of these algorithms in the parameter tuning process has been tested on 2 different agent based model studies. The performance of the algorithms has been observed by manually entering the parameters found for the model. According to the obtained results, it has been seen that the Firefly algorithm where the Particle swarm optimization algorithm works faster has better parameter values. With this study, the parameter tuning problem of the models in the different fields were solved.
Particle swarm optimization, Modeling and Simulation, Parameter tuning, Firefly algorithms, Swarm Intelligence Optimization Algorithms, PArticle swarm optimization
Particle swarm optimization, Modeling and Simulation, Parameter tuning, Firefly algorithms, Swarm Intelligence Optimization Algorithms, PArticle swarm optimization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
