
Sudoku is a number puzzle game popular among people with various difficulty levels (easy, medium, hard, and extremely hard). Sudoku can be modeled as a linear programming problem in mathematics, particularly binary integer linear programming (BILP). Completing Sudoku using BILP is quite tricky because it requires many iterations. Therefore, this study aims to analyze the Sudoku problem using the BILP formulation and implement the problem using Julia, Python, and MiniZinc. Out of 15 cases for each difficulty level, Julia performs better than Python and MiniZinc based on computation time. Moreover, Sudoku with easy difficulty levels is solved with a longer computation time than the other three difficulty levels. The computation time for solving BILP is getting faster as the difficulty level of the Sudoku problem increases. This is because Sudoku problems with easy difficulty levels have more known values as clues and generate more constraints than other difficulty levels.
python, minizinc, sudoku, QA1-939, linear programming, julia, Mathematics
python, minizinc, sudoku, QA1-939, linear programming, julia, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
