
This paper is devoted to the development of a two-dimensional computer-simulation model that is based on the rigid constraints of optical diffraction theory with careful attention paid to the generation of sample realizations of Gaussian-distributed, spatially random, isotropic wave fronts that have zero-mean and prescribed-covariance functions. Given a sample realization of the wave front, the corresponding centered point-spread function and optical-transfer function are evaluated. A detailed study is made of the statistics of random wave-front tilt, point-spread function, modulus squared of transfer function, and phase of transfer function.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
