
Reed-Solomon (RS) codes are widely used to correct errors in storage systems. Finding the error locator polynomial is one of the key steps in the error correction procedure of RS codes. Modular Approach (MA) is an effective algorithm for solving the Welch-Berlekamp (WB) key-equation problem to find the error locator polynomial that needs $2t$ steps, where $t$ is the error correction capability. In this paper, we first present a new MA algorithm that only requires $2e$ steps and then propose two fast decoding algorithms for RS codes based on our MA algorithm, where $e$ is the number of errors and $e\leq t$. We propose Improved-Frequency Domain Modular Approach (I-FDMA) algorithm that needs $2e$ steps to solve the error locator polynomial and present our first decoding algorithm based on the I-FDMA algorithm. We show that, compared with the existing methods based on MA algorithms, our I-FDMA algorithm can effectively reduce the decoding complexity of RS codes when $e
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
