
arXiv: 2508.06899
Local search is an important class of incomplete algorithms for solving Distributed Constraint Optimization Problems (DCOPs) but it often converges to poor local optima. While GDBA provides a comprehensive rule set to escape premature convergence, its empirical benefits remain marginal on general-valued problems. In this work, we systematically examine GDBA and identify three factors that potentially lead to its inferior performance, i.e., over-aggressive constraint violation conditions, unbounded penalty accumulation, and uncoordinated penalty updates. To address these issues, we propose Distributed Guided Local Search (DGLS), a novel GLS framework for DCOPs that incorporates an adaptive violation condition to selectively penalize constraints with high cost, a penalty evaporation mechanism to control the magnitude of penalization, and a synchronization scheme for coordinated penalty updates. We theoretically show that the penalty values are bounded, and agents play a potential game in our DGLS. Our extensive empirical results on various standard benchmarks demonstrate the great superiority of DGLS over state-of-the-art baselines. Particularly, compared to Damped Max-sum with high damping factors (e.g., 0.7 or 0.9), our DGLS achieves competitive performance on general-valued problems, and outperforms it by significant margins (\textbf{3.77\%--66.3\%}) on structured problems in terms of anytime results.
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Discrete Mathematics (cs.DM), Artificial Intelligence, Discrete Mathematics
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Discrete Mathematics (cs.DM), Artificial Intelligence, Discrete Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
