Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Numerical Mathematics
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis for implicit and implicit-explicit ADER and DeC methods for ordinary differential equations, advection-diffusion and advection-dispersion equations

Authors: Philipp Öffner; Louis Petri; Davide Torlo;

Analysis for implicit and implicit-explicit ADER and DeC methods for ordinary differential equations, advection-diffusion and advection-dispersion equations

Abstract

In this manuscript, we present the development of implicit and implicit-explicit ADER and DeC methodologies within the DeC framework using the two-operators formulation, with a focus on their stability analysis both as solvers for ordinary differential equations (ODEs) and within the context of linear partial differential equations (PDEs). To analyze their stability, we reinterpret these methods as Runge-Kutta schemes and uncover significant variations in stability behavior, ranging from A-stable to bounded stability regions, depending on the chosen order, method, and quadrature nodes. This differentiation contrasts with their explicit counterparts. When applied to advection-diffusion and advection-dispersion equations employing finite difference spatial discretization, the von Neumann stability analysis demonstrates stability under CFL-like conditions. Particularly noteworthy is the stability maintenance observed for the advection-diffusion equation, even under spatial-independent constraints. Furthermore, we establish precise boundaries for relevant coefficients and provide suggestions regarding the suitability of specific schemes for different problem.

32 pages, 18 figures, 2 tables. For the associated repository, see https://github.com/accdavlo/IMEX_DeC_ADER . Submitted to Elsevier

Country
Italy
Related Organizations
Keywords

Method of lines for initial value and initial-boundary value problems involving PDEs, advection-diffusion, implicit-explicit methods, deferred correction, ADER, advection-dispersion, 65M06, 65M20, 65L05, 65L06, 65L07, Numerical Analysis (math.NA), stability, Numerical methods for initial value problems involving ordinary differential equations, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, ADER; advection-diffusion; advection-dispersion; deferred correction; implicit-explicit methods; stability, Finite difference methods for initial value and initial-boundary value problems involving PDEs, FOS: Mathematics, Mathematics - Numerical Analysis, Stability and convergence of numerical methods for ordinary differential equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid