
This paper investigates correlating the basic elements of Unified Modeling Language and Cyclomatic Complexity with Function Point Analysis (FPA) principles to develop an automated software functional sizing tool. This concept has been difficult to achieve due to the logical nature of the FPA sizing methodology versus the physical nature of source lines of code (SLOC). In this approach, we examine software complexity from design and maintainability perspectives in order to understand relationships in physical code. Our hypothesis is that this method will “simulate” FPA principles and produce an objective sizing method. This would provide the foundation for an automated tool that scans physical software code to derive “Objective Function Points”(OFPs) functional size measure.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
