Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Statistical Physics
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analytical Methods for Continuous Attractor Neural Networks

Analytical methods for continuous attractor neural networks
Authors: Centonze, Martino Salomone; Treves, Alessandro; Agliari, Elena; Barra, Adriano;

Analytical Methods for Continuous Attractor Neural Networks

Abstract

Abstract Pyramidal cells that emit spikes when the animal is at specific locations of the environment are known as place cells: these neurons are thought to provide an internal representation of space via cognitive maps. Here, we consider the Battaglia-Treves neural network model for cognitive map storage and reconstruction, instantiated with McCulloch & Pitts binary neurons. To quantify the information processing capabilities of these networks, we exploit spin-glass techniques, namely the interpolation method and the replica trick. In particular, in the low-storage regime (i.e., when the number of stored maps scales sub-linearly with the network size and the order parameters self-average around their means), by adapting the Hamilton-Jacobi PDE-approach, we obtain an exact phase diagram in the noise vs inhibition strength plane. In the high-storage regime, by adapting the standard interpolation based on stochastic stability, we find that—for mild inhibition and not too high noise—memorization and retrieval of an extensive number of spatial maps is possible. These results, holding under the replica-symmetry assumption, are recovered, for completeness, also by the replica method and they are corroborated by Monte Carlo simulations. Finally, by leveraging the integral representation of the model (in terms of a bipartite network equipped with highly-selective hidden units), we successfully test its robustness versus various distributions of place fields, including the log-normal distribution observed in recent experiments on bats navigating long tunnels. Additionally, we demonstrate that, by appropriately coupling these hidden units, the network can effectively orient itself even in dynamic environments.

Country
Italy
Keywords

Equilibrium statistical mechanics, Artificial intelligence, artificial intelligence; Boltzmann machines; machine learning; spin-glass theory; statistical mechanics, Applications of statistical mechanics to specific types of physical systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid